Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ObjectivesMicrointeraction-based Ecological Momentary Assessment (micro-EMA) is a smartwatch-based tool that delivers single-question surveys, enabling respondents to quickly report their real-time experiences. The objectives of the two studies presented here were to evaluate micro-EMA's psychometric characteristics and feasibility across three response formats (2-point, 5-point, and 10-point scales) for adults with hearing loss. DesignIn the first study, thirty-two participants completed a dual-task experiment aimed at assessing the construct validity, responsiveness, intrusiveness, and test-retest reliability of micro-EMA across the three response formats. Participants listened to sentences at five signal-to-noise ratios (SNRs) ranging from −3 to 9 dB relative to the SNR for 50% speech understanding, answered the question “Hearing well?” on smartwatches, and repeated the sentences. In the second study, twenty-one participants wore smartwatches over 6 days. Every 15 min, participants were prompted to answer the question “Hearing well?” using one of the three response formats for 2 days. Participants provided feedback on their experience with micro-EMA. ResultsIn the dual-task experiment, participants reported improved hearing performance in micro-EMA as SNRs and speech recognition scores increased across all three response formats, supporting the tool's construct validity. Statistical models indicated that the 5-point and 10-point scales yielded larger relative changes between SNRs, suggesting higher responsiveness, compared to the 2-point scale. Participants completed surveys significantly faster with the 2-point scale, indicating lower intrusiveness, compared to the 5-point and 10-point scales. Correlation analysis revealed that over two visits 1 week apart, the 2-point scale had the poorest test-retest reliability, while the 5-point scale had the highest. In the field trial, participants completed 79.6% of the prompted surveys, with each participant averaging 42.9 surveys per day. Although participants experienced interruptions due to frequent prompts, annoyance and distraction levels were low. Most participants preferred the 5-point scale. ConclusionsThe dual-task experiment suggested that micro-EMA using the 5-point scale demonstrated superior psychometric characteristics compared to the 2-point and 10-point scales at the tested SNRs. The field trial further supported its feasibility for evaluating hearing performance in adults with hearing loss. Additional research is needed to explore the potential applications of micro-EMA in audiology research.more » « lessFree, publicly-accessible full text available January 8, 2026
- 
            Here, we present results of a computational study of electronic, magnetic, and structural properties of FeVTaAl and FeCrZrAl, quaternary Heusler alloys that have been recently reported to exhibit spin-gapless semiconducting behavior. Our calculations indicate that these materials may crystallize in regular Heusler cubic structure, which has a significantly lower energy than the inverted Heusler cubic phase. Both FeVTaAl and FeCrZrAl exhibit ferromagnetic alignment, with an integer magnetic moment per unit cell at equilibrium lattice constant. Band structure analysis reveals that while both FeVTaAl and FeCrZrAl indeed exhibit nearly spin-gapless semiconducting electronic structure at their optimal lattice parameters, FeVTaAl is a 100% spin-polarized semimetal, while FeCrZrAl is a magnetic semiconductor. Our calculations indicate that expansion of the unit cell volume retains 100% spin-polarization of both compounds. In particular, both FeVTaAl and FeCrZrAl are 100% spin-polarized magnetic semiconductors at the largest considered lattice constant. At the same time, at smaller lattice parameters, both compounds exhibit a more complex electronic structure, somewhat resembling half-metallic properties. Thus, both of these alloys may be potentially useful for practical applications in spin-based electronics, but their electronic structure is very sensitive to the external pressure. We hope that these results will stimulate experimental efforts to synthesize these materials.more » « less
- 
            Abstract As a dominant mode of jet variability on subseasonal time scales, the Southern Annular Mode (SAM) provides a window into how the atmosphere can produce internal oscillations on longer-than-synoptic time scales. While SAM’s existence can be explained by dry, purely barotropic theories, the time scale for its persistence and propagation is set by a lagged interaction between barotropic and baroclinic mechanisms, making the exact physical mechanisms challenging to identify and to simulate, even in latest generation models. By partitioning the eddy momentum flux convergence in MERRA-2 using an eddy–mean flow interaction framework, we demonstrate that diabatic processes (condensation and radiative heating) are the main contributors to SAM’s persistence in its stationary regime, as well as the key for preventing propagation in this regime. In SAM’s propagating regime, baroclinic and diabatic feedbacks also dominate the eddy–jet feedback. However, propagation is initiated by barotropic shifts in upper-level wave breaking and then sustained by a baroclinic response, leading to a roughly 60-day oscillation period. This barotropic propagation mechanism has been identified in dry, idealized models, but here we show evidence of this mechanism for the first time in reanalysis. The diabatic feedbacks on SAM are consistent with modulation of the storm-track latitude by SAM, altering the emission temperature and cloud cover over individual waves. Therefore, future attempts to improve the SAM time scale in models should focus on the storm-track location, as well as the roles of the cloud and moisture parameterizations. Significance StatementAs they circumnavigate the planet, the tropospheric jet streams slowly drift north and south over about 30 days, longer than the normal limit of weather prediction. Understanding the source of this “memory” could improve our knowledge of how the atmosphere organizes itself and our ability to make long-term forecasts. Current theories have identified several possible internal atmospheric interactions responsible for this memory. Yet most of the theories for understanding the jets’ behavior assume that this behavior is only weakly influenced by atmospheric water vapor. We show that this assumption is not enough to understand jet persistence. Instead, clouds and precipitation are more important contributors in reanalysis data than internal “dry” mechanisms to this memory of the Southern Hemisphere jet.more » « less
- 
            Sea star wasting disease (SSWD) refers to a suite of gross pathological signs observed in Asteroidea species. It presents to varying degrees as abnormal posture, epidermal ulceration, arm autotomy and eversion of viscera. We report observations of SSWD in the sunstar Crossaster papposus, the first observations of its kind in Europe. While the exact cause of SSWD remains unknown, studies have proposed pathogenic and environmental-stress pathways for disease outbreaks. Although the present observations do not support a precise aetiology, the presence of SSWD in a keystone predator may have wide reaching ecological and management implications.more » « less
- 
            Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade-tolerant species that differ in performance trade-offs between survival in shade and the ability to quickly grow in sunlight. Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates. Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade-offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs photosynthetic) or other seedling traits. These can cause species with the same average seed mass to have divergent performance in the same habitat. We combined long-term studies of seedling dynamics with functional trait data collected at a standard developmental stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance. Across hundreds of species in Ecuador, Panama, and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade-offs in seedling growth and survival. Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology. These results also underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics. Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.more » « less
- 
            null (Ed.)Abstract Models disagree on how much the hydrologic cycle could intensify under climate change. These changes are expected to scale with the Clausius-Clapeyron relation but may locally diverge due in part to the uncertain response of the general circulation, causing the hydrologic cycle to inherit this uncertainty. To identify how the circulation contributes, we link circulation changes to changes in the higher moments of the hydrologic cycle using the novel dynamical framework of the local hydrologic cycle, the portion of the hydrologic cycle driven by moist or dry intrusions. We expand this dynamical framework, developing a closed budget which diagnoses thermodynamic, advective, and overturning contributions to future hydrologic cycle changes. In analyzing these changes for the Community Earth System Model Large Ensemble, we show that overturning is the main dynamic contributor to the tropical and subtropical annual response, consistent with a weakening of this circulation. In the extratropics, we show that advective contributions, likely from storm track changes, dominate the response. We achieve a cleaner separation between dynamic and thermodynamic contributions through a semi-empirical scaling, which reveals the robustness of the Clausius-Clapeyron scaling for the local hydrologic cycle. This scaling also demonstrates the slowing of the local hydrologic cycle and how changing subtropical dynamics asymmetrically impact wave breaking and suppress meridional moisture transport. We conclude that dynamic changes in the subtropics are predominantly responsible for the annual, dynamic response in the extratropics and thus a significant contributor to uncertainty in future projections.more » « less
- 
            Emerging large-scale biobanks pairing genotype data with phenotype data present new opportunities to prioritize shared genetic associations across multiple phenotypes for molecular validation. Past research, by our group and others, has shown gene-level tests of association produce biologically interpretable characterization of the genetic architecture of a given phenotype. Here, we present a new method, Ward clustering to identify Internal Node branch length outliers using Gene Scores (WINGS), for identifying shared genetic architecture among multiple phenotypes. The objective of WINGS is to identify groups of phenotypes, or “clusters,” sharing a core set of genes enriched for mutations in cases. We validate WINGS using extensive simulation studies and then combine gene-level association tests with WINGS to identify shared genetic architecture among 81 case-control and seven quantitative phenotypes in 349,468 European-ancestry individuals from the UK Biobank. We identify eight prioritized phenotype clusters and recover multiple published gene-level associations within prioritized clusters.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
